For the first time, scientists observed oxygen-13 undergoing a unique radioactive decay, producing three helium nuclei, a proton, and a positron, using advanced equipment at Texas A&M University’s Cyclotron Institute.
The Science
Not all of the material around us is stable. Some materials may undergo radioactive decay to form more stable isotopes.
Scientists have now observed a new decay mode for the first time. In this decay, a lighter form of oxygen, oxygen-13 (with eight protons and five neutrons), decays by breaking into three helium nuclei (an atom without the surrounding electrons), a proton, and a positron (the antimatter version of an electron).
Scientists observed this decay by watching a single nucleus break apart and measuring the breakup products.
The Impact
Scientists have previously observed interesting modes of radioactive decay following the process called beta-plus decay. This is where a proton turns into a neutron and emits some of the produced energy by emitting a positron and an antineutrino. After this initial beta-decay, the resulting nucleus can have enough energy to boil off extra particles and make itself more stable.
This new decay mode is the first observation of three helium-nuclei (alpha particles) and a proton being emitted following beta-decay. The findings can inform scientists about decay processes and the properties of the nucleus before the decay.
No comments: